Skip to main content
Read more on IOPscience

When heat moves sideways

07 Jan 2026 Lorna Brigham

MnPS₃ shows an unexpectedly strong thermal Hall effect, challenging current theories of quantum heat transport

Waveform
Waveform (Courtesy: iStock/Swillklitch)

Heat travels across a metal by the movement of electrons. However, in an insulator there are no free charge carriers; instead, vibrations in the atoms (phonons) move the heat from hot regions to cool regions in a straight path. In some materials, when a magnetic field is applied, the phonons begin to move sideways, this is known as the Phonon Hall Effect. Quantised collective excitations of the spin structure, called magnons, can also do this via the Magnon Hall Effect. A combined effect occurs when magnons and phonons strongly interact and traverse sideways in the Magnon–Polaron Hall Effect.

Scientists understand the quantum mechanical property known as Berry curvature that causes this transverse heat flow. Yet in some materials, the effect is greater than what Berry curvature alone can explain. In this research, an exceptionally large thermal Hall effect is recorded in MnPS₃, an insulating antiferromagnetic material with strong magnetoelastic coupling and a spin-flop transition. The thermal Hall angle remains large down to 4 K and cannot be accounted for by standard Berry curvature-based models.

This work provides an in-depth analysis of the role of the spin-flop transition in MnPS₃’s thermal properties and highlights the need for new theoretical approaches to understand magnon–phonon coupling and scattering. Materials with large thermal Hall effects could be used to control heat in nanoscale devices such as thermal diodes and transistors.

Read the full article

Large thermal Hall effect in MnPS3

Mohamed Nawwar et al 2025 Rep. Prog. Phys. 88 080503

Do you want to learn more about this topic?

Quantum-Hall physics and three dimensions Johannes GoothStanislaw Galeski and Tobias Meng (2023)

Copyright © 2026 by IOP Publishing Ltd and individual contributors