Skip to main content
Earth sciences

Earth sciences

Ambipolar electric field helps shape Earth’s ionosphere

25 Sep 2024 Isabelle Dumé
The Endurance rocket ship launches from Ny-Ålesund, Svalbard
Lift off The Endurance rocket ship launches from Ny-Ålesund, Svalbard. (Courtesy: Andøya Space/Leif Jonny Eilertsen)

A drop in electric potential of just 0.55 V measured at altitudes of between 250–768 km in the Earth’s atmosphere above the North and South poles could be the first direct measurement of our planet’s long-sought after electrostatic field. The measurements, from NASA’s Endurance mission, reveal that this field is important for driving how ions escape into space and shaping the upper layer of the atmosphere, known as the ionosphere.

Researchers first predicted the existence of the ambipolar electric field in the 1960s as the first spacecraft flying over the Earth’s poles detected charged particles (including positively-charged hydrogen and oxygen ions) flowing out from the atmosphere. The theory of a planet-wide electric field was developed to directly explain this “polar wind”, but the effects of this field were thought to be too weak to be detectable. Indeed, if the ambipolar field was the only mechanism driving the electrostatic field of Earth, then the resulting electric potential drop across the exobase transition region (which lies at an altitude of between 200–780 km) could be as low as about 0.4 V.

A team of researchers led by Glyn Collinson at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has now succeeded in measuring this field for the first time thanks to a new instrument called a photoelectron spectrometer, which they developed. The device was mounted on the Endurance rocket, which was launched from Svalbard in the  Norwegian Arctic in May 2022. “Svalbard is the only rocket range in the world where you can fly through the polar wind and make the measurements we needed,” says team member Suzie Imber, who is a space physicist at the University of Leicester, UK.

Just the “right amount”

The spacecraft reached an altitude of 768.03 km, where it remained for 19 min while the onboard spectrometer measured the energies of electrons there every 10 seconds. It measured a drop in electric potential of 0.55 V±0.09 V over an altitude range of 258–769 km. While tiny, this is just the “right amount” to explain the polar wind without any other atmospheric effects, says Collinson.

The researchers showed that the ambipolar field, which is generated exclusively by the outward pressure of ionospheric electrons, increases the “scale height” of the ionosphere by as much as 271% (from a height of 77.0 km to a height of 208.9 km). This part of the atmosphere therefore remains denser to greater heights than it would if the field did not exist. This is because the field increases the supply of cold oxygen ions (O+) to the magnetosphere (that is, near the peak at 768 km) by more than 3.8%, so counteracting the effects of other mechanisms (such as wave-particle interactions) that can heat and accelerate these particles to velocities high enough for them to escape into space. The field also probably explains why the magnetosphere is made up primarily of cold hydrogen ions (H+).

The ambipolar field could be as fundamental for our planet as its gravity and magnetic fields, says Collinson, and it may even have helped shape how the atmosphere evolved. Similar fields might also exist on other planets in the solar system with an atmosphere, including Venus and Mars. “Understanding the forces that cause Earth’s atmosphere to slowly leak to space may be important for revealing what makes Earth habitable and why we’re all here,” he tells Physics World. “It’s also crucial to accurately forecast the impact of geomagnetic storms and ‘space weather’.”

Looking forward, the scientists say they would like to make further measurements of the Earth’s ambipolar field in the future. Happily, they recently received endorsement for a follow-up rocket – called Resolute – to do just this.

Copyright © 2025 by IOP Publishing Ltd and individual contributors