Journal of Reliability Science and Engineering will be published by IOP Publishing and the Institute of Systems Engineering of China Academy of Engineering Physics

As our world becomes ever more dependent on technology, an important question emerges: how much can we truly rely on that technology? To help researchers explore this question, IOP Publishing (which publishes Physics World) is launching a new peer-reviewed, open-access publication called Journal of Reliability Science and Engineering (JRSE). The journal will operate in partnership with the Institute of Systems Engineering (part of the China Academy of Engineering Physics) and will benefit from the editorial and commissioning support of the University of Electronic Science and Technology of China, Hunan University and the Beijing Institute of Structure and Environment Engineering.
“Today’s society relies much on sophisticated engineering systems to manufacture products and deliver services,” says JRSE’s co-editor-in-chief, Mingjian Zuo, a professor of mechanical engineering at the University of Alberta, Canada. “Such systems include power plants, vehicles, transportation and manufacturing. The safe, reliable and economical operation of all these requires the continuing advancement of reliability science and engineering.”
Defining reliability
The reliability of an object is commonly defined as the probability that it will perform its intended function adequately for a specified period of time. “The object in question may be a human being, product, system, or process,” Zuo explains. “Depending on its nature, corresponding sub-disciplines are human-, material-, structural-, equipment-, software- and system reliability.”
Key concepts in reliability science include failure modes, failure rates and reliability function and coherency, as well as measurements such as mean time-to-failure, mean time between failures, availability and maintainability. “Failure modes can be caused by effects like corrosion, cracking, creep, fracture, fatigue, delamination and oxidation,” Zuo explains.
To analyse such effects, researchers may use approaches such as fault tree analysis (FTA); failure modes, effects and criticality analysis (FMECA); and binary decomposition, he adds. These and many other techniques lie within the scope of JRSE, which aims to publish high-quality research on all aspects of reliability. This could, for example, include studies of failure modes and damage propagation as well as techniques for managing them and related risks through optimal design and reliability-centred maintenance.
A focus on extreme environments
To give the journal structure, Zuo and his colleagues identified six major topics: reliability theories and methods; physics of failure and degradation; reliability testing and simulation; prognostics and health management; reliability engineering applications; and emerging topics in reliability-related fields.

As well as regular issues published four times a year, JRSE will also produce special issues. A special issue on system reliability and safety in varying and extreme environments, for example, focuses on reliability and safety methods, physical/mathematical and data-driven models, reliability testing, system lifetime prediction and performance evaluation. Intelligent operation and maintenance of complex systems in varying and extreme environments are also covered.
Interest in extreme environments was one of the factors driving the journal’s development, Zuo says, due to the increasing need for modern engineering systems to operate reliably in highly demanding conditions. As examples, he cites wind farms being built further offshore; faster trains; and autonomous systems such as drones, driverless vehicles and social robots that must respond quickly and safely to ever-changing surroundings in close proximity to humans.
“As a society, we are setting ever higher requirements on critical systems such as the power grid and Internet, water distribution and transport networks,” he says. “All of these demand further advances in reliability science and engineering to develop tools for the design, manufacture and operation as well as the maintenance of today’s sophisticated engineering systems.”
The go-to platform for researchers and industrialists alike
Another factor behind the journal’s launch is that previously, there were no international journals focusing on reliability research by Chinese organizations. Since the discipline’s leaders include several such organizations, Zuo says the lack of international visibility has seriously limited scientific exchange and promotion of reliability research between China and the global community. He hopes the new journal will remedy this. “Notable features of the journal include gold open access (thanks to our partnership with IOP Publishing, a learned-society publisher that does not have shareholders) and a fast review process,” he says.
In general, the number of academic journals focusing on reliability science and engineering is limited, he adds. “JRSE will play a significant role in promoting the advances in reliability research by disseminating cutting-edge scientific discoveries and creative reliability assurance applications in a timely way.
“We are aiming that the journal will become the go-to platform for reliability researchers and industrialists alike.”
The first issue of JRSE will be published in March 2025, and its editors welcome submissions of original research reports as well as review papers co-authored by experts. “There will also be space for perspectives, comments, replies, and news insightful to the reliability community,” says Zuo. In the future, the journal plans to sponsor reliability-related academic forums and international conferences.
With over 100 experts from around the world on its editorial board, Zuo describes JRSE as scientist-led, internationally-focused and highly interdisciplinary. “Reliability is a critical measure of performance of all engineering systems used in every corner of our society,” he says. “This journal will therefore be of interest to disciplines such as mechanical-, electrical-, chemical-, mining- and aerospace engineering as well as the mathematical and life sciences.”