Martin Soltau believes that a recent NASA report questioning the economics of space-based solar power was wide of the mark
The most important and pressing issue of our times is the transition to clean energy while meeting rising global demand. Cheap, abundant and reliable energy underpins the quality of life for all – and one potentially exciting way to do this is space-based solar power (SBSP). It would involve capturing sunlight in space and beaming it as microwaves down to Earth, where it would be converted into electricity to power the grid.
For proponents of SBSP such as myself, it’s a hugely promising technology. Others, though, are more sceptical. Earlier this year, for example, NASA published a report from its Office of Technology, Policy and Strategy that questioned the cost and practicality of SBSP. Henri Barde, a retired engineer who used to work for the European Space Agency (ESA) in Noordwijk, the Netherlands, has also examined the technical challenges in a report for the IEEE.
Why NASA thinks you should forget about space-based solar power
Some of these sceptical positions on SBSP were addressed in a recent Physics World article by James McKenzie. Conventional solar power is cheap, he argued, so why bother putting large solar power satellites in space? After all, the biggest barriers to building more solar plants here on Earth aren’t technical, but mostly come in the form of belligerent planning officials and local residents who don’t want their views ruined.
However, in my view we need to take a whole-energy-system perspective to see why innovation is essential for the energy transition. Wind, solar and batteries are “low-density” renewables, requiring many tonnes of minerals to be mined and refined for each megawatt-hour of energy. How can this be sustainable and give us energy security, especially when so much of our supply of these minerals depends on production in China?
Low-density renewables also require a Herculean expansion in electricity grid transmission pylons and cables to connect them to users. Other drawbacks of wind and solar is that they depend on the weather and require suitable storage – which currently does not exist at the capacity or cost needed. These forms of energy also need duplicated back-up, which is expensive, and other sources of baseload power for times when it’s cloudy or there’s no wind.
Look to the skies
With no night or weather in space, however, a solar panel in space generates 13 times as much energy than the same panel on Earth. SBSP, if built, would generate power continuously, transmitted as microwaves through the atmosphere with almost no loss. It could therefore deliver baseload power 24 hours a day, irrespective of local weather conditions on Earth.
SBSP could easily produce more or less power as needed, effectively smoothing out the unpredictable and varying output from wind and solar
Another advantage of SBSP is that could easily produce more or less power as needed, effectively smoothing out the unpredictable and varying output from wind and solar. We currently do this using fossil-fuel-powered gas-fired “peaker” plants, which could therefore be put out to pasture. SBSP is also scalable, allowing the energy it produces to be easily exported to other nations without expensive cables, giving it a truly global impact.
A recent whole-energy-system study by researchers at Imperial College London concluded that introducing just 8 GW of SBSP into the UK’s energy mix would deliver system savings of over £4bn every year. In my view, which is shared by others too, the utility of SBSP is likely to be even greater when considering whole continents or global alliances. It can give us affordable and reliable clean energy.
Space-based solar power: could beaming sunlight back to Earth meet our energy needs?
My firm, Space Solar, has designed a solar-power satellite called CASSIOPeiA, which is more than twice as powerful – based on the key metric of power per unit mass – as ESA’s design. So far, we have built and successfully demonstrated our power beaming technology, and following £5m of engineering design work, we have arguably the most technically mature design in the world.
If all goes to plan, we’ll have our first commercial product by 2029. Offering 30 MW of power, it could be launched by a single Starship rocket, and scale to gigawatt systems from there. Sure, there are engineering challenges, but these are mostly based on ensuring that the economics remain competitive. Space Solar is also lucky in having world-class experts working in spacecraft engineering, advanced photovoltaics, power beaming and in-space robotics.
Brighter and better
But why then was NASA’s study so sceptical of SBSP? I think it was because the report made absurdly conservative assumptions of the economics. NASA assumed an operating life of only 10 years: so to run for 30 years, the whole solar power satellite would have to be built and launched three times. Yet satellites today generally last for more than 25 years, with most baselined for a minimum 15 year life.
The NASA report also assumed that a satellite launched by Starship would remain at around $1500/kg. However, other independent analyses, such as “Space: the dawn of a new age” produced in 2022 by Citi Group, have forecast that it will be an order of magnitude less – just at $100/kg – by 2040. I could go on as there are plenty more examples of risk-averse thinking in the NASA report.
Buried in the report, however, the study also looked at more reasonable scenarios than the “baseline” and concluded that “these conditions would make SBSP systems highly competitive with any assessed terrestrial renewable electricity production technology’s 2050 cost projections”. Curiously, these findings did not make it into the executive summary.
The NASA study has been widely criticized, including by former NASA physicist John Mankins, who invented another approach to space solar dubbed SPS Alpha. Speaking on a recent episode of the DownLink podcast, he suspected NASA’s gloomy stance may in part be because it focuses on space tech and space exploration rather than energy for Earth. NASA bosses might fear that if they were directed by Congress to pursue SBSP, money for other priorities might be at risk.
I also question Barde’s sceptical opinion of the technology of SBSP, which he expressed in an article for IEEE Spectrum. Barde appeared not to understand many of the design features that make SPBSP technically feasible. He wrote, for example, about “gigawatts of power coursing through microwave systems” of the solar panels on the satellite, which sounds ominous and challenging to achieve.
In reality, the gigawatts of sunlight are reflected onto a large area of photovoltaics containing a billion or so solar cells. Each cell, which includes an antenna and electronic components to convert the sunlight into microwaves, is arranged in a sandwich module just a few millimetres thick handling just 2 W of power. So although the satellite delivers gigawatts overall, the figure is much lower at the component level. What’s more, each cell can be made using tried and tested radio-frequency components.
As for Barde’s fears about thermal management – in other words, how we can stop the satellite from overheating – that has already been analysed in detail. The plan is to use passive radiative cooling without active systems. Barde also warns of temperature swings as the satellites pass through eclipse during the spring and autumn equinox. But this problem is common to all satellites and has, in any case, been analysed as part of our engineering work. In essence, Barde’s claim of “insurmountable technical difficulties” is simply his opinion.
Until the first solar power satellite is commissioned, there will always be sceptics [but] that was also true of reusable rockets and cubesats, both of which are now mainstream technology
Until the first solar power satellite is commissioned, there will always be sceptics of what we are doing. However, that was also true of reusable rockets and cubesats, both of which are now mainstream technology. SBSP is a “no-regrets” investment that will see huge environmental and economic benefits, with spin-off technologies in wireless power beaming, in-space assembly and photovoltaics.
It is the ultimate blend of space technology and societal benefit, which will inspire the next generation of students into physics and engineering. Currently, the UK has a leadership position in SBSP, and if we have the vision and ambition, there is nothing to lose and everything to gain from backing this. We just need to get on with the job.