The US condensed-matter physicist Leon Cooper, who shared the 1972 Nobel Prize for Physics, has died at the age of 94. In the late 1950s, Cooper, together with his colleagues Robert Schrieffer and John Bardeen, developed a theory of superconductivity that could explain why certain materials undergo an absolute absence of electrical resistance at low temperatures.
Born on 28 February 1930 in New York City, US, Cooper graduated from the Bronx High School of Science in 1947 before earning a degree from Columbia University, which he completed in 1951, and then a PhD in 1954.
Cooper then spent time at the Institute for Advanced Study in Princeton, the University of Illinois and Ohio State University before heading to Brown University in 1958 where he remained for the rest of his career.
It was in Illinois that Cooper began to work on a theoretical explanation of superconductivity – a phenomenon that was first seen by the Dutch physicist Heike Kamerlingh Onnes when he discovered in 1911 that the electrical resistance of mercury suddenly disappeared beneath a temperature of 4.2 K.
However, there was no microscopic theory of superconductivity until 1957, when Bardeen, Cooper and Schrieffer – all based at Illinois – came up with their “BCS” theory. This described how an electron can deform the atomic lattice through which it moves, thereby pairing with a neighbouring electron, which became known as a Cooper pair. Being paired allows all the electrons in a superconductor to move as a single cohort, known as a condensate, prevailing over thermal fluctuations that could cause the pairs to break.
Bardeen, Cooper and Schrieffer published their BCS theory in April 1957 (Phys. Rev. 106 162), which was then followed in December by a full-length paper (Phys. Rev. 108 1175). Cooper was in his late 20s when he made the breakthrough.
Not only did the BCS theory of superconductivity successfully account for the behaviour of “conventional” low-temperature superconductors such as mercury and tin but it also had application in particle physics by contributing to the notion of spontaneous symmetry breaking.
For their work the trio won the 1972 Nobel Prize for Physics “for their jointly developed theory of superconductivity, usually called the BCS-theory”.
From BCS to BCM
While Cooper continued to work in superconductivity, later in his career he turned to neuroscience. In 1973 he founded and directed Brown’s Institute for Brain and Neural Systems, which studied animal nervous systems and the human brain. In the 1980s he came up with a physical theory of learning in the visual cortex dubbed the “BCM” theory, named after Cooper and his colleagues Elie Bienenstock and Paul Munro. Down the path of least resistance
He also founded the technology firm Nestor along with Charles Elbaum, which aimed to find commercial and military applications for artificial neural networks.
As well as the Nobel prize, Cooper was awarded the Comstock Prize from the US National Academy of Sciences in 1968 and the Descartes Medal from the Academie de Paris in 1977.
He also wrote numerous books including An Introduction to the Meaning and Structure of Physics in 1968 and Physics: Structure and Meaning in 1992. More recently, he published Science and Human Experience in 2014.
“Leon’s intellectual curiosity knew no boundaries,” notes Peter Bilderback, who worked with Cooper at Brown. “He was comfortable conversing on any subject, including art, which he loved greatly. He often compared the construction of physics to the building of a great cathedral, both beautiful human achievements accomplished by many hands over many years and perhaps never to be fully finished.”