Skip to main content
Stars and solar physics

Stars and solar physics

Slow period upsets pulsar theories

27 Aug 1999

Australian astronomers have discovered a radio pulsar with a period so long that they might have to rethink theories of how pulsars emit radiation. Pulsar J2144-3933 has a period of 8.51 seconds, not 2.84 seconds as previously supposed, according to Matthew Young, Richard Manchester and Simon Johnson (Nature 400 848). Pulsars are thought to be extremely dense stars composed almost entirely of neutrons and only about 20 km across.

Inside a pulsar the neutrons are thought to decay into protons and electrons, which are then accelerated by the pulsar’s powerful magnetic field. Since protons and electrons are charged particles, they release intense synchrotron radiation at radio wavelengths from the magnetic poles of the pulsar. Previously astronomers believed that once a pulsar slowed beyond a certain point, the radio emissions would stop. However PSR J2144-3933 – which is now believed to be 280 million years old – defies this result. “By rights it should be a corpse,” says Young.

The team discovered the pulsar while using the Parkes radio telescope in Australia to look for something else. “I was looking for missing pulses, points at which the pulsar skips a beat,” says Young. “At first glance it seemed that this pulsar was missing two beats out of three. Then it became clear that it was really only beating a third as fast as we’d thought.”

“This is a bit of a problem for the theories,” says Manchester. “Perhaps the matter and anti-matter process can happen at lower spin rates than we thought. Or perhaps the pulses are powered by something else. Whatever the case, the theory needs a rethink.”

The discovery also highlights the dangers of relying on fully automated software to locate interesting astrophysical objects. When PSR J2144-3933 was discovered in 1993, a software package determined its period to be 2.84 seconds. Almost half of the pulsars discovered in the past few years were detected by automated software at the Parkes telescope.

Copyright © 2024 by IOP Publishing Ltd and individual contributors