Skip to main content
Everyday science

Everyday science

Integrating electronics with the human body

21 Jan 2011 Louise Mayor

By Louise Mayor

We’ve come a long way in the fields of both electronics and medicine. But the possibility of intimately combining these – integrating electronics with the human body – has so far remained in the minds of creators of cyborg characters such as the Terminator and Star Trek‘s Seven of Nine.

And there’s a reason for this, which I found out while recording this video interview with John Rogers from the University of Illinois at Urbana-Champaign. As Rogers explains, all known forms of biology are soft, elastic and curvilinear, whereas all known forms of electronic technologies are rigid, planar and brittle. “As a result,” he continues, “if you want to integrate electronics with biology – with human skin or tissue – you have severe challenges in a mechanics mismatch and a geometrical form mismatch.”

But this limitation is now being broken by Rogers and his team, who are developing electronics in formats that are much more tissue-like in their geometry and mechanical properties.

LED_pencil.jpg
LED array stretched over the tip of a pencil for scale. (Courtesy: John Rogers)

One specific type of device they’re developing is bio-integrated light-emitting diodes (LEDs), and as proof of principle they have already implanted an LED array under a mouse’s skin.

But does glowing skin bring anything to the table other than futuristic-looking tattoos? In the video, Rogers explains that they can be a diagnostic tool when used for spectroscopy – combining an LED array with sensors allows tissue to be diagnosed based on how it reflects and absorbs light.

But there are therapeutic uses too: Rogers is also interested in putting LEDs in the body along with certain classes of drugs that can be photoactivated. “So you introduce them into the body in an inactive form, and then you can activate them locally by exposing them to light,” he says, adding that there is also evidence emerging that phototherapy – simply irradiating tissue with light – can actually accelerate the wound-healing process.

The above video forms one of a four-part series filmed at the MRS Fall Meeting in Boston. In the video below, Amy Moll – MRS’s head of public outreach – explains why spreading the word about research like this is so important.

We also accosted conference delegates to hear their take on materials science, and had a more in-depth chat with incoming director of the National Science Foundation’s Division of Materials Research, Ian Robertson, about how the agency might allocate their 2011 budget of $320m.

Copyright © 2024 by IOP Publishing Ltd and individual contributors