A new retinal stimulation technique called Oz enabled volunteers to see colours that lie beyond the natural range of human vision. Developed by researchers at UC Berkeley, Oz works by stimulating individual cone cells in the retina with targeted microdoses of laser light, while compensating for the eye’s motion.
Colour vision is enabled by cone cells in the retina. Most humans have three types of cone cells, known as L, M and S (long, medium and short), which respond to different wavelengths of visible light. During natural human vision, the spectral distribution of light reaching these cone cells determines the colours that we see.

Some colours, however, simply cannot be seen. The spectral sensitivity curves of the three cone types overlap – in particular, there is no wavelength of light that stimulates only the M cone cells without stimulating nearby L (and sometimes also S) cones as well.
The Oz approach, however, is fundamentally different. Rather than being based on spectral distribution, colour perception is controlled by shaping the spatial distribution of light on the retina.
Describing the technique in Science Advances, Ren Ng and colleagues showed that targeting individual cone cells with a 543 nm laser enabled subjects to see a range of colours in both images and videos. Intriguingly, stimulating only the M cone cells sent a colour signal to the brain that never occurs in natural vision.
The Oz laser system uses a technique called adaptive optics scanning light ophthalmoscopy (AOSLO) to simultaneously image and stimulate the retina with a raster scan of laser light. The device images the retina with infrared light to track eye motion in real time and targets pulses of visible laser light at individual cone cells, at a rate of 105 per second.
In a proof-of-principle experiment, the researchers tested a prototype Oz system on five volunteers. In a preparatory step, they used adaptive optics-based optical coherence tomography (AO-OCT) to classify the LMS spectral type of 1000 to 2000 cone cells in a region of each subject’s retina.
When exclusively targeting M cone cells in these retinal regions, subjects reported seeing a new blue–green colour of unprecedented saturation – which the researchers named “olo”. They could also clearly perceive Oz hues in image and video form, reliably detecting the orientation of a red line and the motion direction of a rotating red dot on olo backgrounds. In colour matching experiments, subjects could only match olo with the closest monochromatic light by desaturating it with white light – demonstrating that olo lies beyond the range of natural vision.

Metasurface-based contact lens corrects colour blindness
The team also performed control experiments in which the Oz microdoses were intentionally “jittered” by a few microns. With the target locations no longer delivered accurately, the subjects instead perceived the natural colour of the stimulating laser. In the image and video recognition experiments, jittering the microdose target locations reduced the task accuracy to guessing rate.
Ng and colleagues conclude that “Oz represents a new class of experimental platform for vision science and neuroscience [that] will enable diverse new experiments”. They also suggest that the technique could one day help to elicit full colour vision in people with colour blindness.